Class-size Independent Generalization Analsysis of Some Discriminative Multi-Category Classification

نویسنده

  • Tong Zhang
چکیده

We consider the problem of deriving class-size independent generalization bounds for some regularized discriminative multi-category classification methods. In particular, we obtain an expected generalization bound for a standard formulation of multi-category support vector machines. Based on the theoretical result, we argue that the formulation over-penalizes misclassification error, which in theory may lead to poor generalization performance. A remedy, based on a generalization of multi-category logistic regression (conditional maximum entropy), is then proposed, and its theoretical properties are examined.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Class-size Independent Generalization Analsysis of Some Discriminative Multi-Category Classification Methods

We consider the problem of deriving class-size independent generalization bounds for some regularized discriminative multi-category classification methods. In particular, we obtain an expected generalization bound for a standard formulation of multi-category support vector machines. Based on the theoretical result, we argue that the formulation over-penalizes misclassification error, which in t...

متن کامل

دو روش تبدیل ویژگی مبتنی بر الگوریتم های ژنتیک برای کاهش خطای دسته بندی ماشین بردار پشتیبان

Discriminative methods are used for increasing pattern recognition and classification accuracy. These methods can be used as discriminant transformations applied to features or they can be used as discriminative learning algorithms for the classifiers. Usually, discriminative transformations criteria are different from the criteria of  discriminant classifiers training or  their error. In this ...

متن کامل

MLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection

Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific ...

متن کامل

N-ary Error Correcting Coding Scheme

The coding matrix design plays a fundamental role in the prediction performance of the error correcting output codes (ECOC)-based multi-class task. In many-class classification problems, e.g., fine-grained categorization, it is difficult to distinguish subtle between-class differences under existing coding schemes due to a limited choices of coding values. In this paper, we investigate whether ...

متن کامل

شناسایی نوع و مدل وسیله نقلیه با استفاده از مجموعه بخش‌های متمایز‌کننده

In fine-grained recognition, the main category of object is well known and the goal is to determine the subcategory or fine-grained category. Vehicle make and model recognition (VMMR) is a fine-grained classification problem. It includes several challenges like the large number of classes, substantial inner-class and small inter-class distance. VMMR can be utilized when license plate numbers ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004